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Polymer self-consistent field theory numerical tools are applied to a two-dimensional hard-rod colloidal
system. Rods are represented through an interaction site model density functional theory that is derived and
expressed from a self-consistent field theory perspective. A weighted density approximation is used within the
density functional theory, and the phase space is sampled without bias for any particular morphology. A
completely ordered crystal phase is found as well as a liquid crystal state.
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I. INTRODUCTION

Predicting the structures of materials based on the prop-
erties of the material constituents is of obvious importance in
condensed matter physics and materials science and engi-
neering. Progress in this direction has been made in the soft
matter area of polymer physics using a suite of computa-
tional tools developed within numerical self-consistent field
theory �SCFT� �1–8�. These computational advances are well
summarized in the monograph of Fredrickson �9�. Reviews
of SCFT and its applications can be found in Refs.
�2,10–12�.

A method of transporting these polymer structure predic-
tive techniques to other materials, such as colloids, has re-
cently been proposed �13�. This method uses SCFT advances
on an interaction site model classical density functional
theory �DFT� �14,15�, although it is quite generally valid in
principle for almost any DFT. In �13�, a simplest case, aniso-
tropic colloid, was considered, comprised of two disks fused
together to form a single N2-like colloid; this system was
then solved in two dimensions �2D�. A fully ordered crystal
phase was found, as well as a plastic crystal phase, in addi-
tion to the homogeneous gas and liquid states. A phase dia-
gram was presented that delineated regions of each, as well
as the nature of the transitions within the mean-field model.

The purpose of the present paper is to give a full math-
ematical description of the general interaction-site SCFT-
DFT hybrid model discussed in a previous paper �13�, as
well as a more in-depth discussion of the numerical method.
The model is applied here to another 2D system, this time a
hard-rod colloid comprised of four interaction-site disks.
Also, a different technique for exploring the phase behavior
is employed, where an accurate phase diagram is not pre-
sented, but rather, larger cell calculations are performed that
permit the direct observation of macrophase separation in the
system. This is another technique borrowed from polymer
SCFT �5�.

A qualitative difference in results is found between the
N2-like system and the hard-rod system purely due to the
change in colloid geometry. A fully ordered crystal phase is
still found in the rod system, but a liquid crystal phase now
appears, while the plastic crystal phase is absent.

II. THEORY

A system is considered that is composed of n molecules
formed by N spherical interaction sites �monomers� each, in

a rod shape as shown in Fig. 1. The one monomer number
density operator can be written as �16�

�̂�r� = �
i=1

n

�
j=1

N

��r − rij� . �1�

As shown in Fig. 1, the separation between monomers is
fixed at a distance l, so

rij + lui = ri�j+1�, �2�

where ui denotes the unit vector pointing in the direction of
the ith molecule. Bearing in mind the constraint �2�, the par-
tition function for this rigid-rod system in the canonical en-
semble will be

Z =
1

�n�Dnn!
� �

i=1

n

dui�
j=1

N

drij

��rij − ri�j+1� + lui�

��riN − ri�N+1� + lui�

�exp�− Vmono
* ��̂�	 , �3�

where D is the dimensionality of the system, � is the de
Broglie wavelength, and �
�du is the integral over du,
being shorthand for integration over angular degrees of free-
dom. In two dimensions, �=2�, and in three dimensions,
�=4�. The constraint �2� appears as the numerator � func-
tion, whereas the denominator � function is just to remove
the extra bond from the product over j �there should be one
less bond than interaction site�. Vmono

* ��̂� is the monomer-
monomer interaction in terms of the density operator �1�.
Any particle-based Hamiltonian can be written in terms Eq.

FIG. 1. A rod molecule composed of N=4 spheres with centers
separated by a distance l=0.5�.
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�1� �2,16�, but excluded-volume interactions involving infini-
ties do not lend themselves to expression in a field-based
representation. Therefore, Vmono

* ��̂� will not be specified at
this stage. Rather, a density functional approximation will be
used later. The asterix on Vmono

* is a reminder that this poten-
tial is the interaction between two monomers that are con-
tained within a rod, rather than the interaction between bare
monomers.

Noting the identity �17�

F��̂� =� D��„��r� − �̂�r�…F���r�� �4�

allows Eq. �3� to be written as

Z =
1

�n�Dnn!
� �

i=1

n

dui�
j=1

N

drijD���� − �̂�

�
��rij − ri�j+1� + lui�

��riN − ri�N+1� + lui�
exp�− Vmono

* ���	 . �5�

Note the replacement of �̂ with � in Vmono
* . Taking the iden-

tity �2�

�„��r� − �̂�r�… = �
−i�

i�

DW exp�� drW�r����r� − �̂�r��
�6�

means that Eq. �5� can be written as

Z =
1

�n�Dnn!
� �

i=1

n

dui�
j=1

N

drijD�DW��� − �̂�

�
��rij − ri�j+1� + lui�

��riN − ri�N+1� + lui�
exp�−� drW�r��̂�r��

�exp�− Vmono
* ��� +� drW�r���r�	 . �7�

Considering the integral in the argument of the first exponen-
tial of Eq. �7� together with the definition of the density
operator �1� gives

� drW�r��̂�r� = �
i=1

n

�
j=1

N � drW�r���r − rij� = �
i=1

n

�
j=1

N

W�rij� ,

so that

exp�−� drW�r��̂�r�� = �
i=1

n

exp�− �
j=1

N

W�rij�� . �8�

A partition function of a single rod subject to the field W�r�
can be defined as

Q 
� du�
j=1

N

dr j

��r j − r�j+1� + lu�

��rN − r�N+1� + lu�
exp�− �

k=1

N

W�rk��
=� dudr exp�− �

k=1

N

− W�r + �k − 1�lu�� . �9�

Writing Eq. �7� in terms of Eqs. �8� and �9� gives

Z =
Vn

�Dnn!
� D�DW� Q

�V
�n

exp�− Vmono
* ���

+� drW�r���r� , �10�

where V is the volume of the system for D=3 or the area for
D=2. The volume has been introduced here to simplify the
notation later on. The partition function �10� is at this point
an identity for the particle-based partition function �3�. Mak-
ing a mean-field �saddle function� approximation of Eq. �10�
gives a partition function of

Z �
Vn

�Dnn!
� Q

�V
�n

exp�− Vmono
* ��� +� drw�r���r� ,

�11�

where ��r� and w�r� are the functions for which the inte-
grand of Eq. �10� attains its maximum. From the partition
function �11�, it is straightforward to write the free energy of
the system as

F

kBT
= − n ln� V

�D� + ln n ! − n ln� Q

�V
�

+ Vmono
* ��� −� drw�r���r� , �12�

where T is the temperature and kB is Boltzmann’s constant.
Using Stirling’s approximation, rephrasing, and dropping
some constants and linear functions of n gives a free energy
functional of

F�D

kBTV
=

�D

V
��sV

N
�ln��s�

D

N
� − ln� Q

�V
��

−� drw�r���r� +
Fex���

kBT
 , �13�

where � is the diameter of a monomer sphere and �s is the
overall number density of spheres in the system. Also, since
Vmono

* ��� is playing the role of the contribution to the free
energy of the excluded volume of the spheres, it has been
relabeled as Fex��� /kBT, indicating that it is the �dimension-
less� excess free energy beyond the ideal gas. For the case of
rods comprised of only one sphere, the fields w�r� algebra-
ically vanish and Eq. �13� becomes the usual density func-
tional expression Fid+Fex that one would expect, where Fid
is the ideal gas free energy.

Just as with the hard-sphere case, a mean-field attractive
term can be added to Eq. �13� to give

F�D

kBTV
=

�D

V
��sV

N
�ln��s�

D

N
� − ln� Q

�V
�� −� drw�r���r�

+
1

2
� drdr���r�	att��r − r�����r�� +

Fex���
kBT

 , �14�

where 	att�r� is a two-body attractive potential. Together
with the free energy functional �14�, we can rewrite Eq. �9�
in the final form
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Q =� dudr�
k=0

N−1

fk�r,u� , �15�

where

fk�r,u� = e−w�r+klu�. �16�

The free energy functional is varied with respect to ��r�
and w�r� to find a self-consistent solution to Eq. �14�. The
resulting equation are

��r� =
�sV

NQ
� du�

p=0

N−1

�
k=0

N−1

f �k−p��r,u� , �17�

w�r� =� dr�	att��r − r�����r�� +
�Fex���/kBT

���r�
. �18�

For Fex, one wants to select a spherically symmetric potential
for a hard repulsion. As a simple approximation, the Tara-
zona hard-sphere-weighted density approximation �WDA�
functional �18� is chosen here, but more accurate WDA func-
tionals based on good knowledge of the uniform fluid two-
body direct correlation function for the interaction sites
could also be used �19,20�, as could completely different
types of DFT’s �21�. The Tarazona functional is

Fex

kBT
=� dr��r�
��̄�r�� , �19�

where 
 is a free energy per particle that can be acquired
from an appropriate equation of state. It is a function of �̄,
which is the local “smoothed” packing fraction, defined by

�̄�r� =
�

2D
�D�̄�r� �20�

for D=2 or D=3 dimensions, with the smoothed density �̄�r�
given by

�̄�r� =� dr���r��W��r − r��� . �21�

W�r� is a weighting function which introduces nonlocality
into the WDA density functional theory. It can be selected to
be consistent with the uniform direct correlation function of
the monomers, but in this paper the simple and less quanti-
tative method of Tarazona will be used, in which W�r� is
taken as the step function

W�r� = � 3

���D+1� �� − r� , r � � ,

0, r  � ,

�22�

for D=2 or D=3 dimensions. The prefactor in Eq. �22� en-
forces the normalization condition

� drW�r� = 1. �23�

Overall, then, the self-consistent equations will be

��r� =
�sV

NQ
� du�

p=0

N−1

�
k=0

N−1

f �k−p��r,u� , �24�

w�r� = 
��̄�r�� +� dr���r��
d
��̄�

d�̄
W��r − r���

+� dr�	att��r − r�����r�� , �25�

where � is defined in terms of � just as �̄ was defined in
terms of �̄ in Eq. �20�. If the monomers are overlapping
�fused interaction sites�, the packing fraction �20� should be
modified accordingly �22�. The excess free energy �19� can
also be modified by a prefactor so that it is consistent in the
unified atom limit l→0. This causes a slight modification in
the self-consistent equation �25� as discussed in �22�. It
should be noted that the choice of the Tarazona functional
also has the advantage that the present theory reduces to that
of Oxtoby and co-workers when written in the grand canoni-
cal SCFT formalism �23,24� while ignoring orientational de-
pendences �25–30�.

The free energy per particle 
 should be chosen as
spherically symmetric, in keeping with the interaction-site
model approach, according to the molecules involved. To
lowest order, a generic equation of state that enforces a hard
core should suffice. In three dimensions, the Carnahan-
Starling expression �31�


��� =
4� − 3�2

�1 − ��2 �26�

could be chosen, and in two dimensions, an expression for
hard disks is �22�


��� = − ln�1 − �� +
�

1 − �
. �27�

The attractive potential 	att�r� in Eq. �25� is chosen in this
work to be the attractive part of a cutoff Lennard-Jones po-
tential, given by

	att�r� = �U�rmin� − U�rc� , r � rmin,

U�r� − U�rc� , otherwise,
�28�

where

U�r� =
4�

kBT
���

r
�12

− ��

r
�6� �29�

and rmin=21/6� with rc the cutoff value chosen as roughly
half the system size.

III. NUMERICAL METHOD

The real-space method used to calculate the �meta�stable
phases of the hard-rod system is based on the polymer SCFT
techniques described by Drolet and Fredrickson �1,2,9�. The
successful transfer of these techniques has been demon-
strated in a previous publication by the present author �13�.
All spatially varying functions are discretized on a regular
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grid; a constant value for the discretized field w�r� subject to
substantial random noise is taken at the outset. Using this
field, the propagator �16� is assigned, which in turn allows
the calculation of Q and the density field ��r� through Eqs.
�15� and �24�, respectively. The smoothed density and pack-
ing fraction, Eqs. �21� and �20�, can then be computed, al-
lowing one to determine the free energy per particle, given
by either Eq. �26� or �27�, depending on the dimensionality
of the problem. Finally, Eq. �25� gives a new value for the
chemical potential field w�r� on which the whole process can
be repeated. Iteration is continued until the total deviation
between the input and output fields differs by less than some
acceptable tolerance. In actuality, such a direct substitution
algorithm is not stable, and the new and old fields are com-
bined in a simple mixing scheme described in �7�. The total
deviation is defined as a normalized scalar product of a de-
viation function as described in �7,32�; in cases where this
definition behaves poorly, it is replaced by the definition of
Ng �33�. In order to speed convergence, a modification of
polymeric SCFT Anderson mixing is also used �7�. The
modification consists of doing single Anderson steps at set
intervals instead of the simple mixing step. This interdigita-
tion of iteration methods is in contrast to the method de-
scribed in �7�, where simple mixing is continuously used
until a certain accuracy is reached and thenAnderson mixing
is used exclusively. Although the latter is effective for poly-

mers, the modified interdigitation approach mentioned here
is much better for the present colloids.

The idea of using Fourier transforms to expedite real-
space SCFT algorithms was suggested by Rasmussen and
co-workers in the context of polymeric systems �3,4�. In that
context, the modified diffusion equation was solved using
this pseudospectral approach. There is clearly no diffusion
partial differential equation here, but instead there are con-
volution integral equations, such as Eqs. �21� and �25�, for
which Fourier methods greatly speed calculations. Similarly,
Fourier interpolation methods, as described by Ceniceros and
Fredrickson �6�, can be used to efficiently increase the grid
density to check the accuracy of results without doing inde-
pendent, higher-resolution, runs.

After convergence is reached, the stable w�r� and ��r�
fields are substituted into the free energy expression �14�.
This process can be repeated for many different initial ran-
dom w�r� configurations with the lowest free energy result
being taken as the equilibrium morphology. In the previous
work �13�, the whole iterative procedure was then nested in a
simplex minimization routine that varies the calculational
box size and aspect ratio to find the lowest possible free
energy based on cell commensurability. In this work, the box
size is held fixed as a square with periodic boundary condi-
tions and chosen to be sufficiently large such that incommen-
surability effects are not important. For a given overall den-
sity �2�s, the length of a side of a box is taken to be

FIG. 2. Data results of runs showing a “sketch” of possible morphologies for the hard-rod system. Black indicates presence of “mono-
mer” density and white the absence. Gray panels are completely uniform phases with no phase separation. The overall density �s increases
on the x axes, and kBT /� increases on the y axis.
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L

�
=� 40

�2�s
. �30�

The number 40 appears in the numerator of Eq. �30� since 40
disk monomers were taken in each calculation. The use of a
larger box size instead of varying the aspect ratio of a
smaller box as in �13� means that the free energy per volume
is calculated at a lower accuracy. This is not a problem here
since a phase diagram will not be constructed. Rather, the
morphologies at various points of parameter space will be
individually examined, as explained in the Results and Dis-
cussion section.

IV. RESULTS AND DISCUSSION

It has been shown previously that the theory outlined
above can be used to construct phase diagrams �13�. This is
based on comparing the free energies of different phases to

determine the stable morphology and using double-tangent
constructions to dilineate regions of two-phase coexistence.
Alternatively, the SCFT-DFT approach could equally well be
implemented using a grand canonical description �23,24� and
coexisting regions would be found by comparing chemical
potentials. The canonical and grand canonical approaches
must, of course, yield the same results. The two-phase re-
gions are particularly important as they are the hallmark of
first-order phase transitions �34�. Alternatively, to determine
phases, coexistence regions, and therefore the nature of tran-
sitions, a less computationally demanding but more approxi-
mate approach can be taken. In the canonical ensemble, for
large enough calculational cells �boxes�, macrophase separa-
tion can be directly observed through entirely local calcula-
tions �5�, albeit as mentioned, in an approximate way �35�.
This means that through a single choice of parameters and a
single corresponding calculation, the morphology of the sys-
tem may be determined together with knowledge about
whether this point of the parameter space is in a two-phase

FIG. 3. Crystallization of a 2D hard-rod system at density �2�s=1.5 and temperatures �a� kBT /���a� 0.17, �b� 0.15, �c� 0.13, and �d� 0.11.
The color bars indicate the local monomer densities, �2��r�.
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region, and thus one obtains evidence about the nature of
possible transitions �34�. This approach may be compared to
the more rigorous method of comparing chemical potentials
or constructing double tangents which are necessarily nonlo-
cal in terms of the parameter space.

The particular system studied in this work is a two-
dimensional rod composed of N=4 spheres with center-
center separations of l=0.5�—see Fig. 1. The local approach
is taken here for this system; instead of using free energies to
construct a phase diagram as in �13�, a number of sample
calculations are performed and shown in Fig. 2. For each
overall density �2�s and temperature kBT /� in Fig. 2, a cal-
culation from random fields was performed �36�. Three
phases are observed in Fig. 2: two homogeneous phases—
condensed and low density—and a lamellar type phase. This
latter phase, being localized �crystallized� in one direction
but homogeneous �fluid� in the other, corresponds to a liquid

crystal �LC� phase with the rods being oriented parallel to
the layers of the structure. An LC phase was not observed in
the previous work by this author �13�; there an ordered phase
and a plastic crystal phase were found in addition to the
homogeneous states. The more pronounced anisotropy the
colloids in the present case makes the appearance of an LC
phase not unexpected, although it may also be due to the
coarse equation of state. Should the anisotropy be further
enhanced, a nematic phase could likely be observed. Bates
and Frenkel �37� used Monte Carlo simulations to study a
very similar system of 2D hard-rod spherocylinders �dis-
corectangles�. They found a nematic phase only for length to
diameter aspect ratios L /D�7. The present system would
correspond to L /D=1.5, and so the absence of a nematic
phase is consistent with the results of Bates and Frenkel.
Those authors did not however find an LC phase. It may be
that the present LC phase is just a very weak crystal phase,

FIG. 4. Macrophase separation of a 2D hard-rod system for �a� kBT /�=0.40 and �2�s=0.6, �b� kBT /�=0.29 and �2�s=0.9, �c� kBT /�
=0.18 and �2�s=0.4, and �d� kBT /�=0.17 and �2�s=1.2. The color bars indicate the local monomer densities, �2��r�.
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just as the plastic crystal phase in �13� never actually lost all
orientational order, thus being a very weak crystal phase.

True crystallization is found as the temperature is reduced
further, as shown in Fig. 3. The four panels of Fig. 3 dem-
onstrate the increasing localization of the “monomer” disks
comprising the rods as temperature is lowered.

Returning to Fig. 2, many intermediate, macrophase-
separated phases are seen. Figure 4 shows blowups of some
examples. Panels �a� and �b� show macrophase separation
between homogeneous states �gas and liquid coexistence
therefore� and panels �c� and �d� show separation in the LC
phase. �The reader may note the resemblence between the
present phase-separated structures and those of a simulated
Lennard-Jones fluid �38�.� The direct observation of phase
separation means that, in principle, one may compute a
single point of interest within a parameter space in order to
discuss the morphology there without having to nonlocally
check for phase separation �34,35�. This is particularly im-
portant for systems where each computational point of the
phase diagram may take a �relatively� long time, such as in
some three-dimensional calculations, or for colloids of a
complex shape or severe anisotropy. Also, in SCFT-DFT cal-
culations in real space, the morphology becomes reliably ap-
parent quickly even for low-resolution calculations, but to
compute free energies with sufficient accuracy for the con-
struction of phase diagrams, much greater resolution, and
therefore computational time, is needed. The approximate
method of sketching the phase behavior shown here does not
require knowledge of the free energies. If the model is quali-
tative in any case, even accurate computations of the free
energies and phase diagrams result in only qualitative under-
standing of the phase behavior and is therefore not necessar-

ily superior to a rough sketch. In any event, for systems with
many components, double-tangent constructions are no
longer practicle for determining multiphase coexistence and
a grand canonical approach must be taken to compute an
accurate phase diagram. The present, local approach, in the
canonical ensemble is still effective for sketching the behav-
ior of a system in these more complex circumstances.

V. SUMMARY

A hard-rod system in two dimensions comprised of four
disks has been studied using an interaction-site model den-
sity functional theory and self-consistent field theory meth-
ods. Liquid crystal and fully crystal phases are found in ad-
dition to the usual gas and liquid homogeneous phases. A
survey of the phase behavior has been made that shows re-
gions of two-phase coexistence through direct observation of
a larger cell size in the canonical ensemble. This approach,
which does not require accurate free energy calculations,
could be particularly useful for more computationally de-
manding systems. Other systems that could be studied in-
clude fully three-dimensional systems and colloids with
greater orientational degrees of freedom or internal degrees
of freedom.
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